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Why fairness and bias?
Al Could Worsen Health Disparities

In a health system riddled with inequity, we risk making
dangerous biases automated and invisible.

ML makes decisions that impact people:
- . The never-ending quest to predict crime
° . -
hould person get a loan~ using Al
O IS perSOI”I l.lkel.y tO Commlt a Crlme7 The practice has a long history of skewing police toward communities of color. But that hasn't stopped researchers from
building crime-predicting tools.
* Should person get hired?

SCIENCEINSIDER = EUROPE

Europe plans to strictly regulate high-risk Al

technology

The European Commission is creating

regulations with a goal that Al systems "do
not create or reproduce bias”. How Al Is Deciding Who Gets Hired

Employee advocates say hiring software is making discrimination worse. But some
applicants are hacking the system.
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Major challenges

For wide adoption of fairness in machine learning we need to
address the following challenges:

. How to define fairness?
. How to enforce fairness?

« How to prove fairness?
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What does it mean to be fair?

Individual fairness

Requires that if two individuals x and x’ are
~ M(x) similar (according to some similarity notion),

m | decisions of ML model M(x) and M(x")
X o | | should be similar for these two individuals.
y d(x,x")
® ‘

xl

v, Key challenge: finding a suitable distance
L M) similarity metric d (e.g., L, distance in
— feature space)

Image source: Moritz Hardt,
Fairness in Machine Learning, NIPS 2017
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What does it mean to be fair?

Group fairness

G=0

G=1
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ML
model

P(Y=16=0)=PY =16 =1)

Requires the probability an ML model
assigns a label to different groups is the
same (e.g. groups can be different races).

Variants of group fairness differ in the way
groups are formed: demographic parity,
equal opportunity, etc..

Key challenge: How to define groups?
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Sources of bias in datasets

Sampling bias Availability bias Dataset reuse Human biases
Input dataset
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Enforcing fairness

LInECUt ‘ @ Pre-processing approach assumes there is an
atase -
encoder f that transforms training dataset

X1, X9, ..., Xy INt0 @ Nnew dataset z4, 75, ..., Z,, such
that each training input x; is transformed into a

new representation z; = f(x;).

Key advantage: we can reuse the debiased
dataset for several different tasks!

Model 1 Model 2 Model 3

Pre-processing
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Enforcing fairness

Input @ Input @ Input
dataset > dataset . dataset

In-processing

Model

Unfair
output

Post-processing

’&W N\ AN Fair v
Model 1 Model 2 Model 3 output %
Pre-processing In-processing Post-processing
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Fairness: Application Domains

Tabular data Images NLP

The first is a training problem. A.I. must learn to diagnose disease
on large data sets, and if that data doesn't include enough patients
from a particular background, it won't be as reliable for them.
Evidence from other fields suggests this isn’t just a theoretical
concern. A recent study found that some facial recognition
programs incorrectly classify less than 1 percent of light-skinned
men but more than one-third of dark-skinned women. What
happens when we rely on such algorithms to diagnose melanoma
on light versus dark skin?

37 85K True

26 60K False

Medicine has long struggled to include enough women and
minorities in research, despite knowing they have different risk

52 100K True
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Enforcing individual fairness: LCIFR (Ruoss et al., NeurlPS’20)

Representation . - EE— / \
learning > y

Example of an individual fairness formula ¢:

Persons x and x' are similar if and only if:

* They differ in age by at most 10
* They have same or different race
» All of their other attributes are the same.
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Enforcing individual fairness: LCIFR (Ruoss et al., NeurlPS’20)
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1. Given data point x, compute new
data representation z which
provably guarantees that all data
points x’ similar to x will get
mapped to the neighborhood of z:

¢(x,x")= ||z —z’||2 <6

Representation . - EE— / \
learning [ :

2. Given data representation z,
train a classifier that is robust to
e-perturbations in the latent
space
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Enforcing individual fairness: LASSI (Peychev et al., ECCV’22)

1. Use generative
model to capture
the set of images
similar to x

Representation
learning
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2. Use smoothing to guarantee
that representations of similar
individuals get mapped to similar
representations with high
probability

_— .

C(zcs + 5) = C(ch)
w.h.p. for all ||0]| < r,

3. Use smoothing to guarantee
that similar representations get
classified the same with high
probability
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Individual similarity using generative model
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Set of images similar to x lies on a curve that cannot
be easily captured in the image space

Instead we can capture these images using a line
segment in the latent space of a generative model
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Enforcing group fairness: FNF (Balunovic et al., ICLR’22)

zy = fo(x)
Z filx)
FNF
po(x) p1(x) %
o= f5 (2)
- » Fh: Ply=him)) =1
L ~ Dqg
S
EgP(azg(m))gl g \?(gp((l g(Z))i ) 3

Key idea: Compute representations such that data points x from group O get
mapped to a new data representation z which provably cannot be distinguished
from data points x’ from group 1, meaning that Pz, = Pz,
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Enforcing group fairness: FNF (Balunovic et al., ICLR’22)

zy = fo(x)

z1 = hlx)

po(x) pi(x)

We use bijective encoder architecture (normalizing flows) which enables us to
transform input to output distribution, ultimately allowing for training the
encoder to map two groups to similar distributions.
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Enforcing group fairness: FNF (Balunovic et al., ICLR’22)
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What do we prove?
Assuming we know the probability distribution
over inputs x, we can estimate statistical distance

A over latent representations z.

This allows us to bound maximum accuracy of the
adversary (with high confidence).
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Conclusion

Representation
Input % learning
dataset =
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Pre-processing
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